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$. Departamento de Fisica e Citncia dos Materias do Instituto de Fisica e Quimica de SHo 
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Received 12 June 1984 

Abstract. We study the Ashkin-Teller model in the time-continuous Hamiltonian version. 
Finite-size scaling is used to calculate the magnetic (yM), electric (yp)  and thermal (a and 
v )  critical exponents for several values of the coupling constant ( A ) .  Our results confirm 
the believed extended scaling relations and suggest a conjecture relating the mass-gap 
amplitudes and critical indices in the Hamiltonian context. 

Since the work of Wegner (1972), showing that the two-dimensional ( 2 ~ )  Ashkin-Teller 
(AT) model is a staggered eight-vertex model, several studies have been done concerning 
its critical behaviour. In particular, some relations between the critical exponents, 
proposed by Enting ( 1975) and Kadanoff (1979), have been derived by exploring the 
relationship of the eight-vertex model to the generalised Villain (1979, model 
(Kadanoff 1979, Kadanoff and Brown 1979). These extended scaling relations are 

x y =  1 / X t V ,  x t T =  118, x y  = x y / 4 ,  

where xtT(xtv)  is the correlation function exponent of the energy (density) for the 
Ashkin-Teller (eight-vertex) model and x tT(  xtT)  that of magnetisation (polarisation). 
According to these relations the usual critical indices are given by 

l /  U = 2 - 5712 cos-'[tanh (2K4)/(tanh (2K,) - I)], 

a/ U = 2/ U - 2, 

YMIV= 714, 
y p / u =  1 +1/2v, 

where K4 is the four-spin coupling constant of the model. 
More recently a I D  quantum Hamiltonian analogue of the 2~ AT model was 

introduced and investigated by Kohmoto et al (1981). Their results corroborate the 
validity of the extended scaling relations mentioned above, with the translation 

tanh (2K,)/[tanh (2K4) - 1]+ -A, (3 1 
A being a Hamiltonian coupling constant (see equation (4)). 
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In this letter we present a finite-size scaling (FSS) study of that quantum (time- 
continuous) Hamiltonian? 

H = {( 1 -ax( i)) + ( 1  - rX( i)) + A (  I - ax( i ) T X (  i)) 
I 

- P [ a ' (  i)a'( i + 1 )  + T'( i ) ~ ' (  i + 1)  + h a z (  i ) d (  i + 1 ) ~ ' (  i ) T z (  i +I)]}, (4) 

in the region - f d A d 1 where, as shown in figure 1, the model is expected to exhibit 
a single phase transition at its self-dual point P = 1. In equation (4) a"(i), &(i), 
~'(i), ~ ' ( i )  are two sets of Pauli matrices associated with site i and the parameter P 
plays the role of inverse temperature. 

Figure 1. The expected phase diagram for the AT Hamiltonian. The diagram exhibits three 
phases: the ferromagnetic ordered phase F, the partially ordered G and the disordered 
paramagnetic phase P. All the critical lines are related to continuous phase transitions. 
In this letter we are interested in the section of critical line denoted by a bold line which 
contains, as particular cases, the doubled king ( A  = 0) and the four-state Potts model 
( A  = I )  critical points. 

The fundamental assumption of the FSS theory (Barber 1983) is that the mass gap 
G (related to the correlation length), which in an infinite system varies near the critical 
coupling$ Pc as 

for a finite system of size L, behaves as 

G d P ) I p = p ,  - L-l. 

In Equation ( 5 )  E o ( E l )  is the energy of the ground (first-excited)-state of the Hamil- 
tonian H. In general, any thermodynamical quantity T ( P )  whose behaviour in the 
infinite lattice system is 

t Another time-continuous Hamiltonian was studied by Drugowich de Felicio and Koberle (1982), its FSS 
being currently under investigation. 
$ In practice the critical coupling p, of the infinite system is often unknown. The finite-size scaling form 
( 6 )  suggests that p, can be found from the sequence of values p for which successive ratios of G(P, L) and 
G ( 0 ,  L- I )  exactly scale, i.e., the value of ,3 for which 

R , ( P ) = L G ( p ,  L ) / ( L - l ) G ( P , L - l ) = l .  
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in the finite system it will be 

TL(P)IP=P/-  L”/’. 
Therefore, by considering a set of finite lattices it is possible to estimate the index J / /  v 
by extrapolating the sequence 

L[ TL(PJ - TL-I(PC)I/ TL-I(PC) + J / /  v. (9) 

In order to obtain the critical exponents v, a / v ,  y M / v  and yp/v it is convenient to 
perform the extrapolations with the following functions: the P-derivative of the mass- 
gap (aG/apl,=Bc), the ‘specific heat’ (a*E,/13p~1,=,~) ,  the magnetic susceptibility 
(a2Eo/ah21 h = 0) and the electrical susceptibility (a2Eo/at21r=o) respectively. 

Our results for the critical indices are summarised in tables 1 and 2. It is worthwhile 
to mention that the high precision achieved is due to the use of Vanden Broeck-Schwartz 
approximants (Vanden Broeck and Schwartz 1979, Hamer and Barber 1981). The 
poor convergence in the A = 1 region is to be expected since the case A = 1 corresponds 
to the four-state Potts model in which marginality effects are important. 

The remarkable agreement of our results with equations (2) and (3) strongly supports 
the extended scaling relations in the Hamiltonian formulation. 

Furthermore we wish to point out that, in connection with this analysis, we have 
found an important property relating the mass-gap amplitudes and critical exponents. 
In order to state this property we remind the reader that under a continuous phase 

Table 1. Estimated (FSS) and conjectured results for the thermal ( Y and a) critical exponents 
of the 2D Ashkin-Teller model. The parameter A is related to the four-spin coupling 
constant (see equation (3)). 

A 1/V (FSS) l /v  (conjectured) a / v  (FSS) a/ Y (conjectured) 

-0.50 
-0.25 

0.10 
0.25 
0.35 
0.50 
0.75 
0.85 
1 .00 

0.5 1 f 0.02 
0.808*0.001 
1.0599 * 0.000 I 
1.138 f 0.001 
1.1 85 f 0.001 
1.250* 0.001 
1.348 * 0.003 
1.37 * 0.03 
1.42 i 0.05 

0.5Ooo 
0.8083 
1.0599 
1.1385 
1.1854 
1.2500 
1.3506 
1.3927 
I SO00 

- 0.98 * 0.05 
- 0.39 * 0.02 

0.19 * 0.02 
0.27 * 0.03 
0.38 * 0.02 
0.504f 0.005 
0.685 f 0.005 
0.74k0.01 
0.77 f0.02 

- 1.0000 
-0.3833 

0.1 198 
0.277 1 
0.3708 
0.5000 
0.7012 
0.7855 
1 .oooo 

Table 2. Estimated (FSS) and conjectured results, for several values of coupling A, for the 
magnetic and electric susceptibilities ( yM and yp). 

A yp/ Y (conjectured) YM/ Y (conjectured) 

-0.50 
-0.25 

0.25 
0.50 
0.75 
0.85 
1 .00 

1.253 * 0.005 
1.405 f 0.001 
1.5692 f 0.0002 
1.625 f 0.001 
1.675f0.001 
1.696 f 0.001 
I .743 f 0.005 

1.25OOO 
1.40415 
1 S6929 
1.62500 
1.67530 
1.69638 
1.75000 

1.73 * 0.02 
1.73 * 0.03 
1.750rt0.001 
1.750 * 0.001 
1.75 1 f 0.002 
1.752 f 0.002 
1.743 f 0.005 

1.75000 
1.75000 
1.75000 
1.75000 
1.75000 
1.75000 
1.75000 
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transition (in a truly infinite system) a whole set of eigenstates degenerates with the 
ground state. Consequently we can define several mass gaps G, relating the energy of 
those states Ei to the ground state one Eo. Under the fundamental assumption of FSS 
theory those mass gaps for a finite system of size L should behave as 

where the corresponding amplitude was denoted by Ai. These mass gaps are related 
to the long distance behaviour of different correlation functions. 

In this basis in which d and T~ are diagonal the parity operator r v X ( i ) r x ( i )  is 
also diagonal. Using this basis it is not difficult to convince oneself that while the first 
and second mass gap are related to spin-spin correlation functions (az ( j ) v z ( j  + n)) 
and ( d ( j ) T z ( j ) d ( j  + n ) ~ ' ( j  + n)) the third relevant gap is related to the energy-energy 
correlation function. We have calculated those three amplitudes for finite lattices and 
extrapolated them, via Pad6 approximants, for the infinite lattice. Our results are 
summarised in table 3. Those numbers together with equations ( 1 )  and (2) suggest 
the existence of a relation between amplitudes and critical indices in the Hamiltonian 
finite-size scaling, namely 

Ai = ~ T ~ ~ X , / X ,  (10) 

where/x,(x,) is the anomalous dimension of the operator related to the mass gap Gi 
(energy operator) and, as before, pc is the critical coupling. In the AT model xl ,  x2 
and x3 are the anomalous dimensions of the magnetisation, polarisation and energy 
operator respectively. Our claim is that the above relation should be a general property 
of lattice quantum Hamiltonians?. 

Table 3. Mass-gap amplitudes ( A , )  in units of (4rrxipc/xC). We remember that in our case 
p, = I ,  x, is the anomalous dimension of the magnetisation operator, xz is the anomalous 
dimension of the polarisation operator and x3 =,ye that of the energy operator. 

-0.50 
-0.25 

0.10 
0.25 
0.35 
0.50 
0.75 
0.85 
1 .oo 

0.947 43 
0.993 44 
0.999 05 
0.993 98 
0.988 02 
0.974 70 
0.930 58 
0.895 16 
0.755 36 

0.974 28 
0.993 86 
0.999 05 
0.993 96 
0.987 94 
0.974 27 
0.933 68 
0.905 54 
0.755 36 

0.974 36 
0.994 13 
0.999 08 
I .004 74 
0.996 99 
I .004 22 
1.031 03 
1.051 54 
1.09631 

The above conjecture is the Hamiltonian counterpart of another one recently introduced 
(Luck 1982, Derrida and de Seze 1982, Nightingale and Blote 1983) in the transfer 
matrix context, and it is probably a consequence of conformal invariance of the 
underlying field theory in the vicinity of the critical coupling (Cardy 1984). 

Finally we want to comment on the numerical part of calculations. In this analysis 
we have considered lattices up to L = 9 sites (4 states per site) and evaluated the lowest 

t We are checking this property in the Baxter model whose Hamiltonian can be described in a form similar 
to that of equation (4) (Libero and Drugowich de Felicio 1983). 
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eigenvalues of the Hamiltonian H within the machine precision ( using the 
Lanczos scheme of tridiagonalisation (Whitehead et a1 1977, Roomany er a1 1980). In 
order to save computer memory we represent any quantum state by a pair of integer 
numbers whose binary code gives its spin configuration. Because we are dealing with 
periodic boundary conditions we keep only one pair of numbers to represent a whole 
family of cyclic invariant states. The action of any quantum operator on a given state 
can be implemented by logical functions usually built in advanced computer languages. 
In addition, to minimise searching and storage time we employ hash-tables (Knudth 
1973, Alcaraz and Drugowich de Felicio 1984). 

It is a pleasure to acknowledge profitable conversations with R Koberle, V Kurak, L 
N Oliveira, S G Rosa Jr and Valdeci Massaro. 

This work was supported in part by the Brazilian agencies FINEP and CNPq 
(Conselho Nacional de Desenvolvimento Cientifico e Tecnol6gico). 
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